Désolé, mais aucune information n'a été renseignée pour ce profil :-(
LOA publications
- Tan, I., Zelinka, M. D., Coopman, Q., Kahn, B. H., Oreopoulos, L., Tselioudis, G., McCoy, D. T. & Li, N. (2024). Contributions From Cloud Morphological Changes to the Interannual Shortwave Cloud Feedback Based on MODIS and ISCCP Satellite Observations. JGR Atmospheres, 129(8), 10.1029/2023JD040540
- Han, C., Hoose, C., Stengel, M., Coopman, Q. & Barrett, A. (2023). Sensitivity of cloud-phase distribution to cloud microphysics and thermodynamics in simulated deep convective clouds and SEVIRI retrievals. Atmos. Chem. Phys., 23(22), 14077-14095. 10.5194/acp-23-14077-2023
- Ceamanos, X., Coopman, Q., George, M., Riedi, J., Parrington, M. & Clerbaux, C. (2023). Remote sensing and model analysis of biomass burning smoke transported across the Atlantic during the 2020 Western US wildfire season. Sci Rep, 13(16014), 10.1038/s41598-023-39312-1
- Coopman, Q., Riedi, J., Zeng, S. & Garrett, T. J. (2020). Space-Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes. Geophysical Research Letters, 47(6), e2020GL087122. 10.1029/2020GL087122
- Coopman, Q., Riedi, J., Finch, D. P. & Garrett, T. J. (2018). Evidence for Changes in Arctic Cloud Phase Due to Long-Range Pollution Transport. Geophysical Research Letters, 45, 1-10. 10.1029/2018GL079873
- Coopman, Q., Garrett, T. J., Finch, D. P. & Riedi, J. (2017). High Sensitivity of Arctic Liquid Clouds to Long-Range Anthropogenic Aerosol Transport. Geophys. Res. Lett., 45(1), 372-381. 10.1002/2017GL075795
- Coopman, Q., Garrett, T. J., Riedi, J., Eckhardt, S. & Stohl, A. (2016). Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic. Atmos. Chem. Phys., 16(7), 4661-4674. 10.5194/acp-16-4661-2016
Other publications
- Bruno, O., Hoose, C., Storelvmo, T., Coopman, Q. & Stengel, M.: Exploring the Cloud Top Phase Partitioning in Different Cloud Types Using Active and Passive Satellite Sensors, Geophysical Research Letters, 48, e2020GL089863, doi:10.1029/2020GL089863, 2021.
- Coopman, Q. & Tan, I.: Characterization of the Spatial Distribution of the Thermodynamic Phase Within Mixed-Phase Clouds Using Satellite Observations, Geophysical Research Letters, 50, e2023GL104977, doi:10.1029/2023GL104977, 2023.
- Coopman, Q., Hoose, C. & Stengel, M.: Detection of Mixed-Phase Convective Clouds by a Binary Phase Information From the Passive Geostationary Instrument SEVIRI, JGR Atmospheres, 124, 5045–5057, doi:10.1029/2018JD029772, 2019.
- Coopman, Q., Hoose, C. & Stengel, M.: Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations, JGR Atmospheres, 125, e2019JD032146, doi:10.1029/2019JD032146, 2020.
- Coopman, Q., Hoose, C. & Stengel, M.: Analyzing the Thermodynamic Phase Partitioning of Mixed Phase Clouds Over the Southern Ocean Using Passive Satellite Observations, Geophysical Research Letters, 48, e2021GL093225, doi:10.1029/2021GL093225, 2021.
- Evans, R. F. L., Coopman, Q., Devos, S., Fan, W. J., Hovorka, O. & Chantrell, R. W.: Atomistic calculation of the thickness and temperature dependence of exchange coupling through a dilute magnetic oxide, J. Phys. D: Appl. Phys., 47, 502001, doi:10.1088/0022-3727/47/50/502001, 2014.
- Hovorka, O., Devos, S., Coopman, Q., Fan, W. J., Aas, C. J., Evans, R. F. L., Chen, X., Ju, G., and Chantrell, R. W.: The Curie temperature distribution of FePt granular magnetic recording media, Appl. Phys. Lett., 101, 052406, doi:10.1063/1.4740075, 2012.
- Tan, I., Barahona, D. & Coopman, Q.: Potential Link Between Ice Nucleation and Climate Model Spread in Arctic Amplification, Geophysical Research Letters, 49, e2021GL097373, doi:10.1029/2021GL097373, 2022.